ПРОЕКТНА ПРОПОЗИЦІЯ НА УЧАСТЬ У КОНКУРСІ СПІЛЬНИХ УКРАЇНСЬКО – КИТАЙСЬКИХ НАУКОВО-ДОСЛІДНИХ ПРОЕКТІВ ДЛЯ РЕАЛІЗАЦІЇ У 2019 – 2020 рр.

(Міністерство освіти і науки України)

APPLICATION FORM FOR THE CALL FOR PROPOSALS OF THE JOINT UKRAINE – THE PEOPLE'S REPUBLIC OF CHINA R&D PROJECTS FOR THE PERIOD OF 2019 – 2020

(To be applied to the Ministry of Education and Science of Ukraine)

1. General information

Project

- Title: Allocation of genotypes with an increased level of immune properties and soil drought resistance among modern assortment of soft winter wheat Code of the state classification. Rubricator of scientific and technical information DC 022:2008: 20 – agrarian sciences, 201 – agronomy, 202 – plant protection and quarantine
- 2. Aims and field of the project: The purpose is to select the forms of soft winter wheat, which have an increased index of the implementation of the genetic potential of grain productivity, compared with an initial grade. The field of research is agrarian sciences, agronomy (plant selection), plant protection and quarantine (phytopathology, plant immunity)

Partners	Ukraine	China
1. Project leader (first	Vlasenko Volodymyr	LI Chengwei
and last name)	Anatoliiovych	
2. Position	SNAU, Head of the	President of Henan
	Department of Plant	Institute of Science &
	Protection, Doctor of	Technology,
	Agricultural Sciences,	PhD of Agricultural
	Professor	Sciences, Professor
3. Institution	Sumy national agrarian	Henan Institute of Science
	university (SNAU)	& Technology (HIST)
4. Address	40021, Sumy, H.	Hualan road, Hongqi
	Kondratieva street, 160	district, xinxiang city,
		Henan province
5. Phone number, fax	(+38-0542)70-11-04	+86 03733040626
	(+38-099)3099-007	+86 03733693395
6. E-mail	vlasenkova@ukr.net	lichengweiwau@hotmail.com

7. Other team members	Bakumenko	Olha	Zheng Yu, PhD of Phys.
(first and last names,	Mykolaivna	Phd of	And Math. Sciences,
position)	Agricultural So	ciences	Director of European
	Osmachko	Olena	Agrophysical (Xinxiang)
	Mykolaivna		Institute
	Danko Yurii	Ivanovych,	Chen Bihua, Phd of
	Doctor of	Economics,	Agricultural Sciences,
	professor	of the	Consultant of European
	department		Agrophysical (Xinxiang)
	-		Institute

2. Relevant publications (5 at most)

2. Relevant publications (5 at most)	
Ukraine	China
1. About authorship on a plant	
variety Yuviliar Myronivskyi, soft	microscopic and macroscopic
wheat; Certificate № 09929 / V.A.	investigations into monogenic and
Vlasenko, V.V.Kyrylenko,	polygenic interactions of tomato and
V.V.Shelepov, S.M.Marynka,	powdery mildew. Wageningen
S.O.Khomenko, H.S.Bassanets,	Uinversity PhD thesis, October 2005.
V.T.Koliuchyi, V.V.Morhun,	Printer: Posen & Looijen b.v.,
V.F.Lohvynenko, I.P.Artemchuk.	Wageningen. (ISBN: 90-8504-307-7)
Application № 06007021.	2.Sun, Z., Liu, K., Zhang, J., Zhang, Y.,
2. Vlasenko V. A. Selective	Xu, K., Yu, D., & Li, C. (2017). IAA
evolution of myronivskykh wheat / [V.	producing Bacillus altitudinis alleviates
A. Vlasenko, V. S. Kochmarskyi, V. T.	iron stress in Triticum aestivum L.
Koliuchyi, L. A. Kolomiiets, S. O.	seedling by both bioleaching of iron and
Khomenko, V. Y. Solona]; under.	up-regulation of genes encoding
comp. Ed. V. A. Vlasenko. –	ferritins. Plant and Soil, 1-11.
Myronivka, 2012. – 330 p.	3. Zhang, J., Yu, D., Zhang, Y., Liu, K.,
3. Osmachko O.M. Regularities of	Xu, K., Zhang, F., & Li, C. (2017).
inheritance of stability against the	Vacuum and co-cultivation
pathogen of mealy dew in F2 and F3 of	agroinfiltration of (germinated) seeds
soft winter wheat, created with the	results in tobacco rattle virus (TRV)
participation of varieties with wheat-	mediated whole-plant virus-induced
rye translocations / O. M. Osmachko,	gene silencing (VIGS) in wheat and
V. A. Vlasenko // periodical of SNAU:	maize. Frontiers in Plant Science, 8:393.
Agronomy and Biology. – 2017. –	4. Li XJ, Jiang XL, Chen XD, Song J,
Issue 2 (33) – P.145-151.	Ren CC, Xiao YJ, Gao XH, Ru ZG*.
4. Osmachko O.M. Characteristics	Molecular cytogenetic identification of
of the Chinese assortment of soft	0 19 0
winter wheat for resistance to brown	chromosome translocation line with
rust in the conditions of the north-	powdery mildew resistance. PLoS ONE
	12(9): e0184462.
Osmachko, V. A. Vlasenko //	
periodical of SNAU: Agronomy and	Hu, HongYu Liu, QingKai Yang,

Biology 2016 Issue 9 (32) - P.	ManLi Weng, Bin Wang, ChangPing
133-140.	Zhao. Genetic analysis and chromosome
5. Bakumenko O. M., Vlasenko V.	mapping of a thermo-sensitive genic
A. Comparative estimation of grain	male sterile gene in wheat. Euphytica,
productivity of soft winter wheat	2015, 201(3): 321-327.
varieties with and without wheat-rye	
translocations in the conditions of the	
north-astern forest-steppe of Ukraine //	
periodical of SNAU: Agronomy and	
Biology. – Sumy, 2017. – Issue 9 (34)–	
P. 105-110	

3. Background of the project (up to A4 1 page, min font 12)

For increase in production of wheat grain it is necessary to continuously perform selection work concerning increase in an indicator of realization of genetic potential of grain productivity of plants. For this purpose, carry out studying of an ecology-genetic variety of samples of wheat of soft winter domestic and foreign selection (the grades introduced from China) by the genetic potential of resistance to diseases and better drought resistance, in particular soil, that ultimately provides high yields.

It is supposed to distinguish among the investigated samples the carriers of the introgressed component of rye (1RS), which are sources of Pm17, Lr24, Sr1AR genes, that provide increased plant immune properties. Besides, the rye genetic component in the wheat genome contributes to a better formation of the root system, which creates the preconditions for the formation of plants with increased resistance to soil drought. At the same time the overwhelming quantity of grades is such that consisting of a number of biotypes which have the different level of reaction to the environment and adjustable agronomical factors. It allows to select the best of them. By the improving selection is the opportunity to receive forms with the best economic and valuable signs and properties. Thus, by results of assessment of the allocated genotypes with high resistance to diseases and a soil drought, new forms of soft winter wheat will be created, that will provide to comparison with initial maternal forms the high level of realization of genetic potential of plants, further processing of which will lead to creation of new commercial varieties.

As a result, will be created lines of soft winter wheat with a group resistance to mushroom diseases (mealy dew, hard and dusty brand, brown rust, stem rust, in particular to the race of TTKSK strain of Ug99) with a high adaptive norm of reaction to the conditions of Ukraine, will be providing an increase of realization indicators of genetic potential of grain productivity. Their appointment use in programs of creation of new varieties of soft winter wheat and their introduction in production of high-quality grain for needs of the national economy of the country and also for export.

4. Detailed description of the project (up to 2 pages)

It is known that genotypes of soft wheat, which are carriers of wheat-rye translocations 1VL / 1RS and 1AL / 1RS, have increased resistance to plant diseases and pests-carriers of a number of viral diseases. In particular, 1AL/1RS translocation is the carrier of a number of identified resistance genes: Gb2 - to biotypes B and C aphids; Cm 3 - a mite Aceria tosicheilla; Pm17 - mealy dew (pathogen – Erysiphe graminis); Lr24 – brown rust (pathogen – Puccinia recondita); Sr1AR – stem rust (pathogen – Puccinia striiformis). The varieties with these translocations acquire widespread in the grain production of the countries of the world, including - in Ukraine, thanks to the presence of resistance against to phytopathogens. The inherited genes of resistance here thanks to the availability of rye component of the chromosome 1 RS.

At the same time the value of 1AL/1RS of wheat-rye translocation increases in comparison with 1BL/1RS, due to the *Sr1AR* gene. Soft wheat varieties with 1BL/1RS are carriers of a gene *Sr31* which provided resistance to all known races of stem rust practically until the end of the XX century. However, with the advent of race of Ug99 (TTKSK) of stem rust, at first in Uganda (1999), then in Kenya, and now it is observed in crops of wheat of the countries of Central Asia and there is the threat of its further spread, the situation has radically changed as she virulent to Sr31 and this gene lost its protective effect.

A number of methods have been proposed for identification of rye components in genomes of soft winter wheat - biochemical, cytological, with the help of DNA markers. Affordable, relatively simple and convenient is considered the method of an electrophoresis of alcohol-soluble spare proteins of grain of soft wheat in acidic environment. It is known that on the short shoulders of the chromosomes of first homologous groups of soft wheat are polymorphic loci, which encode alcohol-soluble spare protein grains - gliadins. The short shoulder of rye 1R chromosome contains a cluster of genes, that encode prolamin of rye - secalins. Consequently, a marker of 1AL/1RS of translocation is the presence on the electrophoregram of alcohol-soluble proteins of grains of the characteristic component block, which was designated as *Gli-A1w* (*Gld 1A17*).

Currently, in the State Register of Plant Varieties, suitable for distribution in Ukraine, there are several such carriers of wheat-rye translocations. In particular, the carriers of 1AL / 1RS translocation among them are Smuhlianka, Columbiia, Zolotokolosa and some others. Under pressure of natural mutational factors in production and selective sowing such varieties can accumulate biotypic composition of forms, that have received adaptive changes. These biotypes can

have advantages on adaptive norm of reaction when forming elements of productivity, so - to be perspective for creation of new competitive varieties. So, having involved late terms of sowing in the conditions of the northeast Forest-steppe, it will be necessary to make selection of biotypes in varieties with PZhT, and laying of new lines of sibs. The more effective method of creating a new valuable initial material will be involving of genotypes from the 1AL / 1RS translocation in crossing with the best modern Ukrainian varieties of different ecological and geographical origin. By the previous researches were received such hybrid populations which are at a stage of studying F4-F5. An individual selection of spikes from hybrid populations of the fourth and fifth generations, created with participation in crossings of parental forms that are carriers of PZHT 1AL / 1RS translocation, will allow to obtain constant lines.

he next stage will be the reproduction of the lines (F5-F6) in the field conditions of the northeastern forest-steppe and the evaluation of resistance to mealy dew, brown rust and septoriosis under conditions of a natural infectious background using the varieties - accumulators of an infection of these phytopathogens. At the same time, it is necessary to conduct phenological observations and allocation of the best lines for morph physiological features, evaluation of the elements of grain productivity in selections and lines.

By the method of electrophoresis of alcohol-soluble spare protein proteins in the acidic medium will be carried out identification of the rye translocation of 1AL / 1RS in the selection lines (F5-F6). The identification results will provide grounds for dedicated the lines with the *Pm17*, *Lr24*, and *Sr1AR* genes.

Dedicated lines by a complex of economic and valuable signs, with the identified genes of resistance will be involved in selection work on creation of new varieties of soft winter wheat and spring in SNAU and transferred samples of seeds for attraction to similar programs of Mironovsky institute of wheat of V.M. Remesla, Breeding and Genetics Institute - Center of Seed Science and Cultivar Studies and others.

The results of the NTR will be presented in the final report in accordance with the current normative documents, in particular SSU 3973-2000 "System for the development and supply of products for production. Rules for carrying out scientific research works. General Provisions », etc.

5. Expected results to be achieved (up to 1 page)

Will be created lines of soft winter wheat with a group resistance to mushroom diseases (mealy dew, hard and flying smut, rust, brown rust, in particular to the race TTKSK strain Ug99). Dedicated lines will have an introgressive component of rye (1RS), a carrier of genes *Pm17*, *Lr24* and *Sr1AR*, mounted in different genofons of the best modern varieties of soft winter wheat –

Kryzhynka, Rozkishna, Epokha Odeska and others with a high adaptive rate of reaction to the conditions of the north-eastern forest-steppe of Ukraine, which will provide an increase the performance of the genetic potential of grain productivity. Seed lines will be transferred to the National Center of Genetic Resources of Ukraine, as well as profile selection institutions (Institute of Plant Science named after V.Ya. Yurieva NAAS, Mironovsky institute of wheat of V.M. Remesla NAAS, Breeding and Genetics Institute - Center of Seed Science and Cultivar Studies, NC «Institute of Agriculture» NAAS and others) for use in programs for the creation of new varieties of soft winter and spring wheat and their introduction in the production of high quality grain for the needs of the national economy of Ukraine, as well as for export.

The selection lines received by group of authors, certainly, will be used in selection programs for creation of new varieties of soft winter wheat and spring wheat in profile institutions of Ukraine.

New varieties as a result of the State variety inspection will have a guaranteed increase in grain yield to a national standard of at least 2 centners / ha due to the increase of adaptive potential, which is part of the group's resistance to disease. If the newly-created variety will occupy a minimum crop area of 7 thousand hectares (0.1% to the total), then the additional grain collection, due to improved performance of the genetic potential of productivity, will be 1400 tons. That is, the revenue in the year will be more than 4 million UAH. In addition, the cost production of this grain will be lower due to saving on the chemical protection of crops sowing from diseases and technological operations. In this regard, the ecological factor at the expense of reducing the pesticide load will also be important for society and the environment.

	0. Stage plan of works (up to 4 pages)						
№ of stage	Stages of work execution including the stages of the collaborator's work	Execution term (beginning - ending), month, year	Scientific and technical products and other materials subject to delivery to the customer, including the name of the co-executor's product	Cost of work in stages, including the volume of work of the co- executor, thousand UAH			
1	2	3	4	5			
	Conducting of a patent-license search	I IV months	The section of the annual report	35 thsd UAH			
	Conducting of phenological observations of the investigated material	IV - VI monthe	The section of the annual report	49 thsd UAH			
	Estimation of degree of defeat of investigated numbers by phytopathogens	V-VI months	The section of the annual report	140 thsd UAH			

6. Stage plan of works (up to 4 pages)

4	Carrying out group and individual		The section of the annual	70 thsd UAH
1	selections of the best forms on a	$V = V \Pi monthe$	report	70 uisu OATI
	complex of selection signs	2019 p.	report	
5	Estimations of grain efficiency of	VII-VIII months	The section of the annual	70 thsd UAH
5	the received selections / lines		report	70 tilst OAT
6	Selection of seed samples from	· ·	Part of the section of the	21 thsd UAH
U	hybrid populations for biochemical		annual report	21 thst OAH
	analysis	2019 p.		
7	Preparation of selections for	VIII months,	Part of the section of the	35 thsd UAH
	sowing in the fall of 2018	,	annual report	55 tibe erin
8	Sowing of best numbers		Part of the section of the	105 thsd UAH
Ŭ		,	annual report	
9	Conducting of biochemical		Part of the section of the	140 thsd UAH
Í	analysis of samples from hybrid	IX- XI months,	annual report	
	offspring	2019 p.	miner i op ore	
10	Writing an annual report	XI-XII months.	Report for 2019 year	35 thsd UAH
		2019 p.	1 5	
Total	for the first year	•		700 thsd UAH
	Selection of seed samples from		Supplementing the section	35 thsd UAH
	lines of sibs of variety-carriers of	II months,	of the report for 2019 and	
	1AL / 1RS wheat-rye	2020 p.	generalization of data	
	translocations	1		
12	Conducting biochemical analysis		Supplementing the section	105 thsd UAH
	of lines of sibs of varieties with	II-IV months,	of the report for 2019 and	
	1AL / 1RS translocation	2020 p.	generalization of data	
13	Conducting of a patent-license		Supplementing the section	35 thsd UAH
	search		of the report for 2019 and	55 tilst 07 fil
	search	2020 p.	generalization of	
		2020 p.	information	
14	Conducting of phenological		Supplementing the section	70 thsd UAH
	observations of the investigated		of the report for 2019 and	
	material	2020 p.	generalization of	
		ŀ.	information	
15	Estimation of degree of defeat of		Supplementing the section	70 thsd UAH
	investigated numbers by		of the report for 2019 and	
	phytopathogens	2020 p.	generalization of	
		1	information	
16	Estimations of lines on a	VI VII	The section in the final	70 thsd UAH
	phenotype and carrying out high-	VI-VII months,	report	
	quality weeding	2020 p.	-	
17	Estimations of grain efficiency of		Supplementing the section	70 thsd UAH
	the received selections / lines	VII months, 2020	of the report for 2019 and	
		р.	generalization of data	
18	Selection of seed samples from		Supplementing the section	35 thsd UAH
10	selected lines of hybrid origin to		of the report for 2019 and	55 uisa 07111
	confirm the presence of wheat-rye		generalization of data	
	translocation of 1AL / 1RS	2020 p.	Demonantization of data	
	carrier of the genes $Pm17$, $Lr24$	1		
	and SrIAR			
	Conducting of biochemical		Supplementing the section	105 thed UAH
	analysis of lines of hybrid origin	VIII-X months,	of the report for 2019 and	
	anarysis of mes of myond origin	2020 p.	generalization of data	
		-	beneralization of uata	

	Transfer of samples of seed lines to leading institutions for the creation of varieties	X months, 2020 p.	Copies of introduction	references	of 35 thsd UAH
21	Writing the final report	XI-XII months, 2020 p.	Final report		70 thsd UAH
Tota	l for the second year	· · · ·			700 thsd UAH
Tota	ıl				1400 thsd UAH

7. Exchange within the framework of the project

Visit - stay in Ukraine					
First and last	Purpose of visit	Year	Number of days		
name, position					
LI	Organization of	2019	14		
chengwei ,Master	field and	2020	14		
	laboratory research				
Ru zhengang,	Conducting field	2019	14		
assistant	and laboratory	2020	14		
	research				
Li Dongxiao,	Conducting field	2019	14		
assistant	and laboratory	2020	14		
	research				
Li Gan, assistant	Conducting field	2019	14		
	and laboratory	2020	14		
	research				
Liyongchao,	Conducting field	2019	14		
assistant	and laboratory	2020	14		
	research				

Visit - stay in Ukraine

Visit - stay in China

First and last	Purpose of visit	Year	Number of days
name, position			
Vlasenko	Organization of	2019	14
Volodymyr	field and	2020	14
Anatoliiovych	laboratory research		
SNAU, Head of			
the Department of			
Plant Protection			
Bakumenko Olha	Conducting field	2019	14
Mykolaivna,	and laboratory	2020	14
assistant	research		
Osmachko Olena	Conducting field	2019	14
Mykolaivna,	and laboratory	2020	14
assistant	research		
Danko Yurii	Organization of the	2019	14

Ivanovych,	Vice-	implementa	ation of
rector on sc	ientific	calendar	tasks,
work of SNA	AU	field	and
		laboratory	research

8. Budget

Types of expenses	1st year	2nd year
Direct costs	980000	980000
• Labor costs, including taxes	490000	490000
Materials and reagents	56000	56000
Travels	280000	280000
Other direct costs	7000	7000
Indirect costs (up to 30% from labor costs)	147000	147000

9. Signatures

Project leaders	Ukraine	China
 First name and last name Date Signature 	Volodymyr Vlasenko	Li chenguei Fixazo
Institution		
 Name of institution Head of institution Date Signature Stamp 	 Sumy National Agrarian University Volodymyr Ivanovych Ladyka 	

Attached the CVs of the project leaders

Vlasenko V. A. Doctor of Agricultural Sciences, Professor of Department of Plant Protection. For 35 years of academic experience, 287 scientific works have been published, including 2 monographs, 7 textbooks and study guides. In total, with the participation of Vlasenko V. A., 63 wheat varieties were created: soft winter – Myronivska early ripening, Kryzhynka, Remeslivna, Demetra, Podolianka, Columbiia, Kyivska 7, Kyivska 8, Smuhlianka, Pereislavka, Volodarka, Vesnianka, Dobirna, Lasunia, Favorytka, Bohdana, Pyvna, Zolotokolosa, Kalynova, Yuviliar myronivskyi, Kolos Myronivshshyny, Ecomonka, Yasnohirka, Hazarka, Dostatok, Pamiati Remesla, Natalka, Myronivska 32, Ekspromt, Unikum, Slavna, Spasivka, Svitanok myronivskyi and others; soft spring – Kolektyvna 3, Elehiia myronivska, Etiud, Siuita, Struna myronivska, Simkoda myronivska and others; firm spring – Izolda, Zhyzel, Diana. For breeding developments, 42 author's certificates for plant varieties and 9 patents have been obtained. Dedicated in co-authorship highly productive, valuable and strong in grain quality, adapted to the conditions of the forest-steppe, and also some to the conditions of Polissya and Steppe of Ukraine, the wheat varieties: soft winter - 49, from which 21 are entered in the State Register of Plant Varieties, suitable for distribution in Ukraine in 2017 and 3 are undergoing state testing; soft spring - 11, of which 7 are entered in the State Register of Plant Varieties in 2017 and 2 are under state testing; firm spring - 3, which are entered in the State Register of Plant Varieties in the State Register of Plant Varieties of the last 4 years, wheat varieties, created with the participation of Vlasenko V.A., were introduced in production on a total area of about 1 million hectares.

He is a member of the editorial boards of 3 professional scientific publications recognized by the Ministry of Education and Science of Ukraine: